A method for stochastic constrained optimization using derivative-free surrogate pattern search and collocation
نویسندگان
چکیده
Recent advances in coupling novel optimization methods to large-scale computing problems have opened the door to tackling a diverse set of physically realistic engineering design problems. A large computational overhead is associated with computing the cost function for most practical problems involving complex physical phenomena. Such problems are also plagued with uncertainties in a diverse set of parameters. We present a novel stochastic derivative-free optimization approach for tackling such problems. Our method extends the previously developed surrogate management framework (SMF) to allow for uncertainties in both simulation parameters and design variables. The stochastic collocation scheme is employed for stochastic variables whereas Kriging based surrogate functions are employed for the cost function. This approach is tested on four numerical optimization problems and is shown to have significant improvement in efficiency over traditional Monte-Carlo schemes. Problems with multiple probabilistic constraints are also discussed. 2010 Elsevier Inc. All rights reserved.
منابع مشابه
Stochastic radial basis function algorithms for large-scale optimization involving expensive black-box objective and constraint functions
Optimization Involving Expensive Black-Box Objective and Constraint Functions Rommel G. Regis Mathematics Department, Saint Joseph’s University, Philadelphia, PA 19131, USA, [email protected] August 23, 2010 Abstract. This paper presents a new algorithm for derivative-free optimization of expensive black-box objective functions subject to expensive black-box inequality constraints. The proposed al...
متن کاملINTRODUCTION AND DEVELOPMENT OF SURROGATE MANAGEMENT FRAMEWORK FOR SOLVING OPTIMIZATION PROBLEMS
In this paper, we have outlined the surrogate management framework for optimization of expensive functions. An initial simple iterative method which we call the “Strawman” method illustrates how surrogates can be incorporated into optimization to stand in for the most expensive function. These ideas are made rigorous by incorporating them into the framework of pattern search methods. The SMF al...
متن کاملAlgorithm xxx: APPSPACK 4.0: Parallel Pattern Search for Derivative-Free Optimization
APPSPACK is software for solving unconstrained and bound constrained optimization problems. It implements an asynchronous parallel pattern search method that has been specifically designed for problems characterized by expensive function evaluations. Using APPSPACK to solve optimization problems has several advantages: No derivative information is needed; the procedure for evaluating the object...
متن کاملConstrained Production Optimization with an Emphasis on Derivative-free Methods
Production optimization involves the determination of optimum well controls to maximize an objective function such as cumulative oil production or net present value. In practice, this problem additionally requires the satisfaction of physical and economic constraints. Thus the overall problem represents a challenging nonlinearly constrained optimization. This work entails a comparative study of...
متن کاملDISCRETE SIZE AND DISCRETE-CONTINUOUS CONFIGURATION OPTIMIZATION METHODS FOR TRUSS STRUCTURES USING THE HARMONY SEARCH ALGORITHM
Many methods have been developed for structural size and configuration optimization in which cross-sectional areas are usually assumed to be continuous. In most practical structural engineering design problems, however, the design variables are discrete. This paper proposes two efficient structural optimization methods based on the harmony search (HS) heuristic algorithm that treat both discret...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 229 شماره
صفحات -
تاریخ انتشار 2010